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LETTER TO THE EDITOR

The trapping model for positrons diffusing inside the grain
of arbitrary shape

Jerzy Dryzek†§ and Adam Czapla‡
† Institute of Nuclear Physics, PL-31-342 Kraków, ul. Radzikowskiego 152, Poland
‡ Academy of Mining and Metallurgy, PL-30-059 Kraków, al. Mickiewicza 30, Poland

Received 13 May 1998

Abstract. We present a general solution of the trapping model for positrons which diffuse
inside a grain of arbitrary shape towards its surface. The consideration takes into account both
the diffusion and transition regime. The explicit form relations for the mean positron lifetime
and the positron lifetime spectrum were obtained. The theoretical relation for the mean positron
lifetime was analysed thoroughly for a grain of ellipsoidal shape. We established that the shape
of the grain influenced the positron annihilation characteristics.

Positron annihilation spectroscopy is a well-established technique for the detection and
study of vacancy-like defects in the crystalline structure. This originates from the fact
that the positrons can be trapped at them and their annihilation characteristics differ from
those corresponding to delocalized positrons. However, it is difficult to understand the
experimental results when positrons annihilate in inhomogeneous, fine grained or highly
deformed samples. This arises from the fact that the experimental results are usually
interpreted using the standard trapping model, where the trapping of positrons in solids is
described by kinetic equations. This model was first introduced by Brandt [1] who tried to
explain the second lifetime in positron lifetime spectra measured in alkali halides. The model
succeeded in many cases but for an inhomogeneous medium, the time-dependent diffusion
equation is needed. The inhomogeneity means that the distance between the positron traps
is comparable to the so-called diffusion length of the positron, equal toL+ =

√
D+τf ,

whereD+ is the positron diffusion coefficient andτf is the positron mean lifetime in the
bulk material. The typical value of this parameter is close to 0.1µm for various materials.
The trapping of positrons is controlled by two processes: first the diffusion towards the
trap, and second, the transition from the free to the localized state. If the trapping is limited
by the first process we call it the diffusion-limited regime; for the second process, it is the
transition-limited regime. Brand and Paulin [2] first considered the trapping model but only
in the diffusion-limited regime. There is some experimental evidence that this approach is
not adequate to describe real experimental data (see e.g. [3–5]). Nowadays, we also have
the solution of the trapping model in the diffusion–transition regime but only for the grain
which has a symmetric form: sphere [6, 7], layer or fibre [5]. This is not adequate when
we wish to study the fine grained sample or to deduce the trapping parameters; in this case
we need to know how the shape of a grain influences the positron characteristics.
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The aim of this letter is to follow the exact solution of the trapping model in the
diffusion–transition regime with no assumption about grain shape. We will apply the general
solution to the case of a grain with ellipsoidal shape and test how deviation from a spherical
shape influences the mean positron lifetime.

In the model, which we will call the diffusion trapping model (DTM), we assume that
positrons diffuse in a perfect grain in which they annihilate with the rate:λf = 1/τf , where
τf is the mean positron lifetime in a free state. The grain surface is a perfect sink for
positrons in which they are localized and then annihilate with the rateλb < λf . This is
the so-called Smoluchowski boundary condition. The transition rate from the free to the
localized state is described by theα parameter, the value of which is equal to the width
of the boundary times the trapping rate parameter defined in the standard trapping model
[1]. The number of trapped positrons, denoted asnb, is a function of time. This is the
same for the local positron concentration within the grain,C(r, t). Both functions fulfill
the following set of equations

∂

∂t
C(r, t) = D+∇2C(r, t)− λfC(r, t)

d

dt
nb(t) = α ⊂⊃

∫∫
dS C(r, t)− λbnb(t)

D+ ⊂⊃
∫∫

6

dS · ∇C(r, t)+ α ⊂⊃
∫∫

6

dS C(r, t) = 0

(1)

where6 is the grain surface. The first equation is a diffusion equation for positrons which
can also annihilate within the grain. The second one is the rate equation for the trapped
positrons, and the third exhibits the fact that only the positrons which pass through the
surface are able to be localized there. This last equation is the boundary condition for
the first two equations. Our aim is to find a general solution of the set of equations, and
in particular to find the function describing the time dependence of the total number of
positrons:

n(t) = nb(t)+ ⊂⊃
∫∫∫

�

dV C(r, t) (2)

where� is the space inside the grain. From this equation we can evaluate the positron
annihilation characteristics, namely, the positron lifetime spectrum−dn(t)/dt or the mean
positron lifetime defined as follows

τ =
∫ ∞

0
dt t

(
−dn

dt

)
≡
∫ ∞

0
dt n(t). (3)

For the grain which has a symmetrical shape, layer, fibre or sphere, the solution of the DTM
can be expressed in an analytical form as was presented in [5–7]. However, now we try to
find a general solution of the problem when the grain has no specified shape. The efficient
method of solution of the set (1) is to use the Laplace transformation for all the equations

−C0(r, 0)+ sC̃(r, s) = D+∇2C̃(r, s)− λf C̃(r, s)
sñb(s) = α ⊂⊃

∫∫
6

dS C̃(r, s)− λbñb(s)

D+ ⊂⊃
∫∫

6

dS · ∇C̃(r, s)+ α ⊂⊃
∫∫

6

dS C̃(r, s) = 0.

(4)
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In our consideration of this we assume that att = 0, the positrons are uniformly distributed
within the grain:

C0(r, 0) =


1

V�
for r inside the grain

0 for r outside the grain
(5)

whereV� is the grain volume and there are no positrons trapped at the grain boundary,
that meansnb(0) = 0. This assumption is well justified in the conventional experiments
where positrons implanted into the sample have a continuous energy spectrum. After some
algebra and the application of the Gauss theorem we can convert (4) into the following set

∇2C̃(r, s)− [γ (s)]2C̃(r, s) = −C0(r, 0)

D+

ñb(s) = α

(λb + s) ⊂⊃
∫∫

6

dS C̃(r, s)

D+ ⊂⊃
∫∫∫

�

dV ∇2C̃(r, s)+ α ⊂⊃
∫∫

6

dS C̃(r, s) = 0

(6)

whereγ (s) = √(s + λf )/D+, let us note thatγ (0) = 1/L+.
We define a new function

F̃ (r, s) = (λf + s)V�C̃(r, s) (7)

which according to the first equation of (6) fulfills inside the grain the following equation

∇2F̃ (r, s)− γ 2F̃ (r, s) = −γ 2 (8)

whereγ ≡ γ (s). The Laplace transform of the function which describes the change of the
total number of positrons one can deduce from (7)

ñ(s) = ñb(s)+ 1

(λf + s)
1

V�
⊂⊃
∫∫∫

�

dV F̃ (r, s) (9)

and from (6)

ñ(s) = 1

λb + s
[

1− λf − λb
λf + s

1

V�
⊂⊃
∫∫∫

�

dV F̃ (r, s)

]
. (10)

The mean positron lifetime is described by

τ = ñ(0) = 1

λb
−
(

1

λb
− 1

λf

)
1

V�
⊂⊃
∫∫∫

�

dV F̃ (r, 0) (11)

or

τ = 1

λf
+
(

1

λb
− 1

λf

)[
1− 1

V�
⊂⊃
∫∫∫

�

dV F̃ (r, 0)

]
. (12)

The positron lifetime spectrum after the inverse of the Laplace transform is expressed as

−dn(t)

dt
= λb

[
1− 1

V�
⊂⊃
∫∫∫

�

dV F̃
(
r,−λb

)]
exp

(−λbt)
+
∑
i=0

res
s=−λi

λi

λb + s
[

1− λf − λb
λf + s

1

V�
⊂⊃
∫∫∫

�

dV F̃ (r, s)

]
exp

(−λit).
(13)

We note that the number of lifetime components depends only on the number of poles of the
expression in the second brackets and it can be an infinite number. The interesting feature
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is that the intensity of the longest lifetime component associated withλb has a similar form
to the expression in brackets for the mean lifetime component (12); the only difference is
that in the first cases = −λb and in the seconds = 0. It shows that one can evaluate the
intensity of the longest lifetime component in the DTM from the mean lifetime component
replacingL+ by L+/

√
1− (λb/λf ). This is a general property of the DTM, which does

not depend on the grain shape. It shows that the study of the mean lifetime is of the same
value as the study of the lifetime components in the positron lifetime spectrum.

The quantity

1− 1

V�
⊂⊃
∫∫∫

�

dV F̃ (r, 0)

describes the probability of positron annihilation at the grain boundary, so one can also
deduce the relation for the so-calledS-parameter measured in the Doppler broadening of
annihilation line spectroscopy. In the relation (12) we only have to replace 1/λf by theS-
parameter associated with positron annihilation in the free state, and 1/λb by theS-parameter
in the localized state.

In order to find an explicit form of relation for the positron mean lifetime or the positron
lifetime spectrum we have to solve equation (8). From the theory of the differential equation
we know that its solution must have the following form

F̃ (r, s) = A(s)f̃ (r, s)+ g̃(r, s) (14)

where

∇2f̃ (r, s)− γ 2f̃ (r, s) = 0. (15)

The functionA(s) we can evaluate from the third equation of set (6)

A(s) = −
(λf + s) ⊂⊃

∫∫∫
�

dV [g̃(r, s)− 1]+ α ⊂⊃
∫∫

6

dS g̃(r, s)

(λf + s) ⊂⊃
∫∫∫

�

dV f̃ (r, s)+ α ⊂⊃
∫∫

6

dS f̃ (r, s)
. (16)

Finally, we need only the following relation which can be expressed byf̃ and g̃ functions:

1− 1

V�
⊂⊃
∫∫∫

�

dV F̃ (r, s) = 1

1+ ((λf + s)/α)B(γ )
[

1−
(

1− B(γ )
D(γ )

)
1

V�
⊂⊃
∫∫∫

�

dV g̃(r, s)

]
(17)

where

B(γ ) =
⊂⊃
∫∫∫

�

dV f̃ (r, s)

⊂⊃
∫∫

6

dSf̃ (r, s)
(18)

and

D(γ ) =
⊂⊃
∫∫∫

�

dV g̃(r, s)

⊂⊃
∫∫

6

dS g̃(r, s)
. (19)

Thus, to solve the DTM, the exact solution of equation (8) is required, from which we can
construct the functionsB(γ ) andD(γ ) presented above.
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Having theB(γ ) function we can also evaluate the values ofλi in the relation for the
positron lifetime as follows

λi = λf
(

1− ξ2
i

γ 2(0)

)
≡ λf

(
1− ξ2

i L
2
+
)

(20)

whereξi fulfills the transcendental equation

ξiB
(
ξi
)+ α

D+
= 0. (21)

The above relation is valid for the grain of arbitrary shape. We can see that the solution of
the DTM is always possible in a numerical form. In the case of a grain which has a simple
symmetric shape, the solution can be expressed in an analytical form, e.g., for spherical
grains the functionsB(γ ) andD(γ ) can be written in an analytical form

B(γ ) = 1

γ

i1(γ R)

i0(γ R)
(22)

and

D(γ ) = 1

3
R (23)

g̃(r, s) = 1 (24)

where

i0(z) = sinh(z)

z
i1(z) = cosh(z)

z
− sinh(z)

z2

andR is the sphere radius.
The solution of equation (8) in spherical co-ordinates has the following form

F̃ (r, s) =
∑
l,m

[
El,m(γ )jl(i γ r)+ γ 2 ⊂⊃

∫∫∫
�

dV ′Gl

(
r, r ′

)
Y ∗l,m

(
θ ′, ϕ′

)]
Yl,m(θ, ϕ) (25)

whereGl(r, r
′) = −γjl(iγ r<)h(1)l (iγ r>) is the Green function,i = √−1, jl is the spherical

Bessel function,h(1)l is the Hankel function,r< is the lesser of(r, r ′) andr> is the greater
of (r, r ′). Yl,m(θ, ϕ) are the spherical harmonic functions. This can be rewritten in the
simpler form

F̃ (r, s) =
∑
l,m

[
Al,m(γ )jl(i γ r)+ γ 2bl,m

∫ ∞
0

dr ′(r ′)2Gl

(
r, r ′

)]
Yl,m(θ, ϕ) (26)

wherebl,m =⊂⊃
∫∫

�

dθ dϕ Y ∗l,m(θ, ϕ). If we express the functioñF(r, s) in the following way

F̃ (r, s) =
∑
l,m

[
Al,m(γ )f̃l,m(r, s)+ g̃l,m(r, s)

]
(27)

then expression (17) in spherical co-ordinates has the form

1− 1

V�
⊂⊃
∫∫∫

�

dV F̃ (r, s) = 1−
∑
l,m

1

1+ ((λf + s)/α)Bl,m(γ )
[(

1− Bl,m(γ )

Dl,m(γ )

)

× 1

V�
⊂⊃
∫∫∫

�

dV g̃l,m(r, s)+ (λf + s)
α

Bl,m(γ )bl,m
1

V�
⊂⊃
∫∫∫

�

dV Yl,m(θ, ϕ)

]
(28)
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where

Bl,m(γ ) =
⊂⊃
∫∫∫

�

dV f̃l,m(r, s)

⊂⊃
∫∫

6

dS f̃l,m(r, s)
(29)

Dl,m(γ ) =
⊂⊃
∫∫∫

�

dV g̃l,m(r, s)

⊂⊃
∫∫

6

dS g̃l,m(r, s)
. (30)

The relation presented above allows us to solve the DTM for the case when the grain has
an arbitrary shape, but the advantage of this expression is that we can expand the solution
in a series and, in some complex calculations, take only the first terms.

We will apply the results presented above to consideration of the DTM of positrons in the
symmetrical grain which has an ellipsoidal shape. The relation will be solved numerically.
We will test how the shape of the grain affects the mean positron lifetime. Let us denote
that the long axis of the ellipsoid has length 2Rε and the short axis 2R (figure 1(a)). In
our calculations we only take contributions withl = 0, m = 0 in the series (28), and we

Figure 1. The mean positron lifetime, normalized toτf , versusR/L+ calculated from the
DTM for the ellipsoidal shape grain. The calculations were performed for three values of the
ατf /L+: (a) 0.1, (b) 1 and (c) 100 and four values of theε parameter: 1, 2, 5 and 10 (note
ε = 1 corresponds to the spherical grain).
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Figure 2. The mean positron lifetime, normalized toτf , versus theε parameter, obtained in the
frame of the DTM. The calculations were performed for several values of theR/L+ parameter:
(a) 0.2, 0.4, 0.6, 1 and (b) 1, 2, 5, 10. The parameterατf /L+ was equal to 100.

will consider the influence of theε parameter only on the mean positron lifetimeτ , see
equation (12). Figure 1 presents the results of the numerical calculations of this quantity
normalized toτf as the function of the ratioR/L+, for different values of the parameter
responsible for the transition positrons from free to the localized stateατf /L+, and different
ε parameter. The results for the spherical grain, the case ofε = 1, we can take as a reference.
First of all, we can see that the effect of the grain shape almost disappears whenατf /L+
is small (figure 1(a)). It shows that when transitions from the free to the bound state of
positrons limit the trapping process we can neglect the influence of the grain shape on the
positron annihilation characteristics. But the shape is important when the diffusion is a
slower process in comparison to the transition i.e. whenατf /L+ is large (figures 1(b) and
(c)). The increase of theε parameter causes a faster decrease of the mean positron lifetime
towardsτf with the increase ofR/L+ in comparison to the spherical grain. We can easily
understand this, as with the increase ofε more positrons will annihilate inside the grain and
less will have a chance to arrive at the grain boundary. Nevertheless, this effect depends on
the value of the ratioR/L+, as we can see in figure 2. In this figure we looked at the effect
of theε parameter on the mean positron lifetime for various values of theR/L+ parameter.
We can see that ifR/L+ is less than 0.4 or higher than five the changes of the mean
positron lifetime are less than 30%. We can thus conclude that the shape of the grain is an
important feature which can effectively influence the positron annihilation characteristics.
This makes it difficult to evaluate the real value of the diffusion and trapping parameters,
L+ andατf , respectively. For example, if we had experimental data for the mean positron
lifetime as a function of mean radius of the grains which have non-spherical shape, and we
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tried to describe them using the formula for the sphere, the obtainedL+ parameter would
then be overestimated in comparison to the real value. This effect seems to explain a small
discrepancy between the value of theL+ parameter obtained from the slow positron beam
experiments and evaluated from the DTM, referred to in [8] and [5]. The authors believe
that from positron annihilation characteristics, in the frame of the DTM, it is possible to
deduce the shape of grains. It will be easier if we know, from other experiments, theL+
andατf parameters.

In conclusion, the presented diffusion trapping model can solve the case of arbitrary
shape grains. We have shown the general similarity between the relation for the mean
positron lifetime and the relation on the intensity of the longest positron lifetime component
deduced from the DTM. The numerical calculations performed for the grain of ellipsoidal
shape have shown the significant influence of grain shape on the mean positron lifetime.
This is valid only when the transition rate from free to the localized state at the boundary is
high and the diffusion length of the positrons does not differ much from the size of grain.

The authors would like to thank the Committee of Scientific Research (Poland) for
supporting this work under the grant No 2P03B 027 10.
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